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ERROR ANALYSIS FOR CONSTRAINED FIRST-ORDER SYSTEM

LEAST-SQUARES FINITE ELEMENT METHODS∗

J. H. ADLER† AND P. S. VASSILEVSKI‡

Abstract. In this paper, a general error analysis is provided for finite-element discretizations
of partial differential equations in a saddle-point form with divergence constraint. In particular, this
extends upon the work of [1], giving a general error estimate for finite-element problems augmented
with a divergence constraint and showing that these estimates are obtained for problems such as
diffusion and Stokes’ using the First-Order System Least-Squares (FOSLS) finite-element method.
The main result is that by enforcing the constraint on a H1-equivalent FOSLS formulation one
maintains optimal convergence of the FOSLS functional (i.e., the energy norm of the error), while
guaranteeing the conservation of the divergence constraint (i.e, mass conservation in some examples).
The error estimates and results depend on using finite elements for the constraint space that are
inf-sup stable when paired with the spaces used for the original unknowns. This includes using
discontinuous spaces on coarse meshes and pairing with standard bilinear or biquadratic elements in
order to confirm the results.
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1. Introduction. Least-squares finite-element methods (LSFEM) and, in par-
ticular, the first-order system least squares (FOSLS) approach have been used widely
in various applications in physics and engineering, e.g. [5, 6, 9, 12, 18, 34, 40]. This
method is a finite-element discretization, which approximates the solution of a sys-
tem of linear partial differential equations (PDEs) by minimizing the L2 norm of the
residual of the PDE [16, 17, 35, 36, 19]. One advantage is that this process yields
symmetric positive definite (SPD) algebraic systems, which are amenable to multi-
level techniques. This is true for any PDE system, including systems like Stokes,
where a mixed finite-element method would yield a saddle-point problem and an
indefinite linear system [13]. While a mixed method would require satisfying an “inf-
sup” or Ladyzenskaja-Babuska-Brezzi (LBB) condition [13, 15] in order to show that
the finite-element spaces chosen are stable, LSFEMs do not require such restrictions.
Thus, simple H1 spaces can be used for all unknowns in the system (H1 denotes a
product of scalar H1 spaces). Another advantage is that these methods yield sharp
and reliable a posterior estimates [4]. This is useful for implementing adaptive local
refinement techniques, which allow the approximations to be resolved more accurately
in regions of higher error [14, 23].

However, a main concern with the method is that in some applications, a loss
of conservation for certain properties is noted. For instance, the Stokes’ or Navier-
Stokes’ system contains an equation for the conservation of momentum and one for
the conservation of mass [24, 25]. Since the least-square principle minimizes both
equations equally, both quantities are only conserved up to the error tolerance given
for the simulation. Therefore, attempts to improve the conservation of mass would
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result in a loss of accuracy in the conservation of momentum. Despite this, in several
applications, conservation of a certain quantity is considered essential to capturing
the true physics of the system.

In this paper, we follow up on previous work, in which methods are considered for
improving the local conservation of a divergence constraint, such as mass conservation,
using the FOSLS finite-element method. In [1], an approach is discussed that simply
corrects the solution approximated by the FOSLS discretization so that it conserves
the divergence constraint. The goal was to keep the discretization as is, preserving all
of the special properties of the least-squares minimization, while still obtaining the
appropriate conservation. As a result, the a posteriori error estimates and the simple
finite-element spaces are still able to be used. This was accomplished by simply aug-
menting the FOSLS system with the divergence constraint and a Lagrange multiplier.
Then, a subdomain correction method was used to solve the resulting saddle-point
system at relatively little extra cost. This approach is not new and was done, for
example, in [20] for the Stokes’ problem. However, choosing stable pairs of the finite-
element spaces used with the Lagrange multiplier space was not really considered.
In our previous paper, it was shown that only when a stable pair of elements with
the constraint is used (i.e. P2 − P0 or P2 − P1) are optimal results obtained. This
results from the fact that only for the stable combinations is there enough room to
minimize the FOSLS functional. All finite-element pairs yield improved conservation
as this is enforced directly. However, for the unstable pairings as the constraint is
enforced, only a few possible solutions are allowed and, as a result, when the FOSLS
functional is minimized, there is no longer enough room to minimize certain terms
in the functional any more. Thus, the best solution is not found. The functional is
no longer estimating the H1 error accurately and the a posteriori error estimator is
lost. Therefore, the conclusion is that the constraint always needs to be chosen from
a space which gives a stable finite-element pair with whatever unknowns from the
FOSLS system that you wish to conserve. This requires considering an inf-sup condi-
tion for the FOSLS unknown and Lagrange multiplier pairs, but in many applications
these pairs of spaces are well-known [15, 24, 25].

There have been many other attempts to improve conservation properties for
least-square problems that try to avoid the issues of considering an inf-sup condition
and solving saddle-point systems. For instance, simply solving the systems with more
accuracy improves mass conservation. This includes using techniques such as adaptive
refinement to increase the spatial resolution of the discretization [5, 9], and higher-
order elements or higher order time-stepping methods for time-dependent problems
[37]. However, this requires more computational resources as it is simply driving the
error down in all terms of the functional. In three-dimensional simulations this would
require more work. Other approaches that have resulted in improved mass conser-
vation include using divergence-free finite-element spaces [6, 2, 21, 22] or methods in
which discontinuous velocity approximations are allowed [7, 8]. In addition, methods
that reformulate the first-order system are used that make the approximations more
conservative [27], as well as those that use a compatible least-squares method [10],
which uses ideas from mixed Galerkin methods to improve the mass conservation.
Finally, an alternative approach called FOSLL∗ [31, 32] has been developed, in which
an adjoint system is considered, and the error is minimized in the L2 norm directly.
This has been shown to improve conservation in satisfying the divergence-constraint
in incompressible fluid flow and electromagnetic problems.

All of these methods avoid the need to solve a saddle-point system. However,
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there are many robust methods for solving such systems, such as those described in [1],
using local subdomain corrections with an overlapping Schwarz (Vanka-like) smoother
and a coarse grid correction to solve the constrained problem [41, 42, 43]. Since this
post-processing is done on local subdomains and/or on coarse-grids, only a fractional
amount of computational cost is added to the solution process. Thus, the Lagrange
multiplier approach can be a robust method for ensuring mass conservation as well
as maintaining the important properties of a least-squares minimization process.

In this paper, we extend upon the work of [1] and perform a model error analysis of
the method. In particular, we give a general error estimate for finite-element problems
augmented with a divergence constraint and show that we obtain these estimates that
apply to problems such as diffusion and Stokes’ using the FOSLS method. The main
result is that by enforcing the constraint on a H1-bounded FOSLS formulation one
maintains optimal convergence of the FOSLS functional (i.e., the energy norm of the
error). This convergence may depend on the constraint space that is used, however,
for standard problems as shown below, this does not pollute the convergence compared
to the pure FOSLS method and has better local conservation properties.

The paper is outlined as follows. In Section 2, we introduce some notation and
briefly describe the FOSLS discretization along with the constraint method. Section 3
describes the error analysis of the Lagrange multiplier approach, along with a bound
on the energy norm of the error. Numerical results are then given in Section 4. Finally,
concluding remarks and a discussion of future work is given in Section 5.

2. Constrained First-Order System Least-Squares. Consider a PDE sys-
tem that is first put into a differential first-order system of equations, denoted by
LU = f . Here, L is a mapping from an appropriate Hilbert space, V, to an L2 prod-
uct space. In many contexts, V is chosen to be an H1 product space with appropriate
boundary conditions.

This minimization is written as

U∗ = arg min
U∈V

G(U; f) := arg min
U∈V

||LU − f ||2
0
, (2.1)

where U∗ is the solution in an appropriate H1 space. The minimization results in the
weak form of the problem:

Find U∗ ∈ V such that

a(U,v) := (LU∗, Lv) = (f ,Lv) ∀v ∈ V, (2.2)

where (·, ·) is the usual L2 inner product on the product space, (L2)k, for k equations
in the linear system. If the following properties of the bilinear form, a(U,v) are
assumed,

∃ constants, c1 and c2, such that

continuity a(U,v) ≤ c2||U||V ||v||V ∀U,v ∈ V, (2.3)

coercivity a(U,U) ≥ c1||U||2V ∀ u ∈ V, (2.4)

then, by the Riesz Representation Theorem, this bilinear form is an inner product on
V [30]. In addition, these properties imply the existence of a unique solution, U∗ ∈ V,
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for the weak problem (2.2). Here, c1 and c2 depend only on the operator, L, and the
domain of the problem. They are independent of U and v.

Next, U∗ is approximated by restricting (2.1) to a finite-dimensional space, Vh ⊆
V, which leads to (2.2) restricted to Vh. Since Vh is a subspace of V, the discrete
problem is also well-posed. Choosing an appropriate basis, Vh = span{Φj}, and
restricting (2.2) to this basis, yields an algebraic system of equations involving the
matrix, A, with elements

(A)ij = (LΦj , LΦi). (2.5)

It has been shown that, in the context of a SPD H1-equivalent bilinear form re-
stricted to a finite-element subspace, a multilevel technique exists that yields optimal
convergence to the linear system [17].

To illustrate this further and to demonstrate some results of the constrained
method, two test problems that have a divergence constraint are considered: Diffusion
and Stokes’. In [1], a diffusion problem in two-dimensions was considered, −∇·∇p = f ,
rewritten as a first-order system:

−∇ · u = f, (2.6)

∇× u = 0, (2.7)

u −∇p = 0. (2.8)

Here, the gradient of the solution is introduced as an extra variable and the
extra curl equation is added so that the weak system is continuous and coercive and,
therefore, H1 equivalent [16, 17]. Then, the following functional is minimized,

G = ||∇ · u + f ||20 + ||∇ × u||20 + ||u −∇p||20.

The resulting discrete system is

AU = b,

where U = (u, p)T . Here, A is the matrix as defined in (2.5), where L now refers to
system (2.6)-(2.8). Similarly, the right-hand side vector, b, is defined as bi = (f , LΦi),
where f = (f, 0, 0)T . When minimizing this functional, equal weight is given to each
term in the system. Therefore, if better accuracy is needed on a certain term, such as
the divergence constraint, accuracy is lost in the other portions. In many applications,
however, exact conservation of certain terms is important for developing an accurate
model of a physical system. For instance, one may want to conserve the “mass” of
the system. This is defined as

∫

Ω

−∇ · u dΩ =

∫

Ω

f dΩ. (2.9)

In addition, in many applications local mass conservation is desired instead, where
the mass is conserved in all regions of the domain, including a single element.

This notion of “mass” has more physical meaning in the case of modeling an
incompressible fluid via Stokes’ equations:

−∇ · ∇u + ∇p = g,

∇ · u = 0.
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Now, (2.9) states that the amount of flow in or out of the system is equal to the
flow contributed by the source (in this case 0). Thus, a velocity-vorticity-pressure
first-order formulation of Stokes’ equations is the second system considered. The
vorticity, ω = ∇× u is introduced and the system is augmented to make it formally
H1 equivalent:

∇× ω + ∇p = g, (2.10)

∇ · u = 0, (2.11)

ω −∇× u = 0, (2.12)

∇ · ω = 0, (2.13)

It should be noted that in two-dimensions the vorticity is a scalar, and equation
(2.13) is not present. Here, preserving the incompressibility condition, (2.11), is
difficult at the discrete level, but can be considered as an added constraint to the
system. The FOSLS function in this instance is

G = || − ∇ × ω + ∇p − g||20 + ||∇ · u||20 + ||ω −∇× u||20 + ||∇ · ω||20,

and we obtain a discrete linear system, AU = b, where U = (u, p, ω)t and bi =
(f , LΦi), where f = (g, 0,0, 0)t.

In both cases, to enforce mass conservation, a Lagrange multiplier, λ, is introduced
and the FOSLS system is augmented as follows:

(

A BT

B 0

)(

U

λ

)

=

(

b

b̂

)

. (2.14)

Here, A and U are as before for the FOSLS discretization, λ is the Lagrange multiplier,
and B is a finite-element assembly of the constraint, in these two examples, ∇·u = f .

For the rest of the paper, we consider a triangulation of a mesh in two dimensions,
Th, with grid spacing h. In addition, consider the polynomial spaces of order k defined
on this triangulation as, Pk. Let Φj ∈ [Pk1

]
2

be a vector and let wi ∈ Pk2
be a scalar.

Thus, B is defined as:

Bij = (∇ · Φj , wi) ,

and

b̂i = (f, wi) .

In the case of the diffusion problem, (2.6)-(2.8), f := −f and in the case of Stokes,
(2.10)-(2.13), f = 0. Choosing a discontinuous space for w ensures the local conser-
vation of mass (on element level). For this paper, we consider P0 elements (i.e., a
finite-element space of discontinuous piecewise constants) only.

3. Error estimates. The following section analyzes this system from a varia-
tional point of view and develops error estimates for the solution to such a system.

3.1. A general error estimate for problems with divergence constraint.

Consider a constrained minimization problem that leads to the following saddle–point
problem:
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Find U =

[

∗
u

]

∈ H1(Ω), u ∈ H0(div), and λ ∈ L2
0(Ω), such that

a(U,v) + (λ, ∇ · θ) = (f , v), for all v =

[

∗
θ

]

∈ H1, θ ∈ H0(div),

(∇ · u, w) = (f, w), for all w ∈ L2
0.

(3.1)

A general bilinear form a(., .) is considered, which is symmetric and positive definite
giving rise to the energy norm,

‖v‖a =
√

a(v, v). (3.2)

In the FOSLS setting, a(., .) is defined as in (2.2) and ‖v‖a = F =
√
G. It is assumed

that a(., .) is H1-bounded or continuous, as in (2.3), i.e.,

a(U,v) ≤ C ‖U‖a‖v‖1 for all U, v ∈ H1, (3.3)

and that it is weakly coercive, in the sense that

C ‖∇ · u‖2 ≤ a(U, U) for any U =

[

∗
u

]

∈ H1 and u ∈ H0(div). (3.4)

Note, that in the case of a continuous and coercive FOSLS bilinear form, where the
divergence constraint is part of the functional itself, (3.4) is satisfied by the coercivity
condition, (2.4).

Remark 3.1. The weak-coercivity assumption, (3.4), can always be ensured by
testing the second equation in (3.1) with w = ∇ · θ ∈ L2

0 for any θ ∈ H0(div) and
adding it to the first one. This leads to the equivalent saddle–point system

(∇ · u, ∇ · θ) + a(U,v) + (λ, ∇ · θ) = (f , v) + (f, ∇ · θ),
for all v =

[

∗
θ

]

∈ H1, θ ∈ H0(div),

(∇ · u, w) = (f, w), for all w ∈ L2
0.

(3.5)
In this way the bilinear form becomes a(U, v) := (∇ · u, ∇ · θ) + a(U,v) which is
weakly coercive in the sense of (3.4) as long as the original one is SPD (which is
assumed).

The discrete problem reads: Find Uh =

[

∗
uh

]

∈ V = Vh ⊂ H1, uh · n = 0 on

∂Ω, and λH ∈ W = WH ⊂ L2
0, such that

a(Uh,v) + (λH , ∇ · θ) = (g, v), for all v =

[

∗
θ

]

∈ V,

(∇ · uh, w) = (f, w), for all w ∈ W.

Thus, the following assumptions are made. There is a H1-conforming scalar finite
element space, Vh, which is associated with a triangulation Th of the computational
domain, Ω (polygon in 2D or polytope in 3D). To discretize the bilinear form a(., .),
which is defined on H1 × H1, where H1 = (H1)d for a given d ≥ 1, Vh = (Vh)d is
used. To be specific, homogeneous normal boundary conditions are imposed for the
component of U ∈ H1 used in the divergence constraint denoted by u, i.e., u · n = 0
on ∂Ω. This implies that the Lagrange multiplier space W consists of functions with
zero mean-value, i.e., W ⊂ L2

0(Ω).
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The Lagrange multiplier finite-element space, W = WH , is associated with an-
other (quasi-uniform) mesh, TH , which is assumed to be sufficiently coarser with
respect to Th. This condition in particular implies that the discrete problem is not
over-constrained. It is assumed that WH consists of discontinuous piecewise polyno-
mials of a certain degree. Thus, WH can be paired with a Raviart–Thomas space of
a certain polynomial order, RH ⊂ H0(div) (not needed in the discretization), such
that the following “inf-sup” condition holds, cf., [38]:

β ‖w‖1,H ≤ sup
ψ∈RH

(w, ∇ ·ψ)

‖ψ‖0
≃ sup
ψ∈RH

(w, ∇ ·ψ)

(‖ψ‖2
0 + H2 ‖∇ ·ψ‖2

0)
1
2

, (3.6)

where ‖.‖1,H comes from the so-called interior penalty quadratic form, defined as

‖w‖2
1,H ≡

∑

T∈TH

∫

T

|∇w|2 dx +
∑

E∈EH

1

H

∫

E

[w]2 d̺. (3.7)

Here, [.] = [.]E stands for the jump across the interface E between two adjacent
elements from TH . These (interior) interfaces form the set EH .

3.1.1. Error analysis. Introduce the errors E = U − Uh with components
e = u − uh and δ = λ − λH . They satisfy the Galerkin relations

a(E,v) +(δ, ∇ · θ) = 0, for all v =

[

∗
θ

]

∈ V,

(∇ · e, w) = 0, for all w ∈ W.
(3.8)

Next, some auxiliary estimates are proved.
Lemma 3.1. For any s ∈ ( 1

2 , 1], and any w ∈ V and ψ ∈ H1
0, there exists a

C > 0 such that

(w, ∇ · ψ) ≤ C ‖w‖1,H

(

‖ψ‖2
0 + H2s|ψ|2s

)
1
2 . (3.9)

Proof. The result can be established as follows. Let EH be the set of (interior)
edges (faces in 3D) of elements from the triangulation TH . For each E ∈ EH denote
by T+

E and T−
E the two neighboring elements that share E. Then based on integration

by parts, a trace inequality for Hs-functions, for any s ∈ ( 1
2 , 1], on the domains T+

E

and T−
E with diameter O(H), and Cauchy-Schwarz inequalities, we have

(w, ∇ · ψ) =
∑

T∈TH

∫

T

∇w ·ψ +
∑

E∈EH

∫

E

[w]ψ · nE

≤ C







∑

T∈TH

‖∇w‖T ‖ψ‖T +
∑

E∈EH



H−1

∫

E

[w]2





1
2


H

∫

E

(ψ · nE)2





1
2







≤ C







∑

T∈TH

‖∇w‖T ‖ψ‖T +
∑

E∈EH



H−1

∫

E

[w]2





1
2
(

‖ψ‖2
T+

E
∪T−

E

+ H2s |ψ|2
s, T+

E
∪T−

E

)
1
2







≤ C





∑

T∈TH

‖∇w‖2
T +

∑

E∈EH

1

H

∫

E

[w]2





1
2

[

‖ψ‖2 + H2s|ψ|2s
]

1
2

= C‖w‖1,H

(

‖ψ‖2 + H2s‖ψ‖2
s

)
1
2 .
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Lemma 3.2. The following “inf–sup” estimate holds if h/H is sufficiently small:

C ‖w‖1,H ≤ sup
θ∈Vh

(w, ∇ · θ)
(‖θ‖2

0 + H2‖∇θ‖2
0)

1
2

, for all w ∈ WH . (3.10)

Proof. Given z ∈ H1
0, let zh ∈ Vh (vanishing on ∂Ω) be a stable finite interpolant

such that

‖zh‖0 ≤ C‖z‖0, ‖∇zh‖0 ≤ C‖∇z‖0, and ‖z − zh‖0 ≤ Ch ‖∇z‖0. (3.11)

Now use estimate (3.9) from Lemma 3.1 for ψ = z−zh, which gives, for any parameter
τ > 0,

(w, ∇ · (z − zh)) ≤ C‖w‖1, HH
(

h
H +

(

h
H

)1−s
)

‖∇z‖
≤ C H√

τ

(

h
H +

(

h
H

)1−s
)

‖w‖1, H

(

‖z‖2
0 + τ‖∇z‖2

)
1
2 .

Based on a regular decomposition result, found for example in [29], for each u ∈
H0(Ω, div) and τ > 0, there is a z ∈ H1

0(Ω) such that ∇ · z = ∇ · u and

‖z‖2 + τ‖∇z‖2 ≤ c0

(

‖u‖2
0 + τ ‖∇ · u‖2

0

)

,

for a uniform constant c0 > 0 (independent of τ). This implies the estimate

sup
u∈H0(Ω, div)

(

λ, ∇ · u
)

(‖u‖2
0 + τ ‖∇ · u‖2

0)
1
2

≤ √
c0 sup

z∈H1
0
(Ω)

(

λ, ∇ · z
)

(‖z‖2
0 + τ ‖∇z‖2

0)
1
2

. (3.12)

Now, using the inf-sup estimate, (3.6), characterizing the ‖.‖1,H -norm (defined in
(3.7)) and the above estimate, (3.12), we then obtain (since RH ⊂ H0(div))

β ‖w‖1, H ≤ sup
u∈H0(div)

(w, ∇ · u)

(‖u‖2 + H2‖∇ · u‖2)
1
2

≤ √
c0 sup

z∈H1
0
(Ω)

(w, ∇ · z)
(‖z‖2 + H2‖∇ z‖2)

1
2

.

Therefore,

β ‖w‖1, H ≤ √
c0 sup

z∈H1
0
(Ω)

(w, ∇ · (z − zh))

(‖z‖2 + H2‖∇ z‖2)
1
2

+ C sup
zh∈V

(w, ∇ · zh)

(‖zh‖2 + H2‖∇ zh‖2)
1
2

.

Using properties (3.11), the last three estimates imply, assuming that τ ≤ CH2,

β‖w‖1, H ≤ C H√
τ

(

h
H +

(

h
H

)1−s
)

‖w‖1, H sup
z∈H1

0
(Ω)

(‖z‖2
0+τ‖∇z‖2)

1
2

(‖z‖2
0
+H2‖∇z‖2)

1
2

+ C sup
zh∈V

(w, ∇·zh)

(‖zh‖2+H2‖∇ zh‖2)
1
2

≤ C H√
τ

(

h
H +

(

h
H

)1−s
)

‖w‖1, H + C sup
zh∈V

(w, ∇·zh)

(‖zh‖2+H2‖∇ zh‖2)
1
2

.

Note that we started with a vector-function, zh, having all its components vanish
on ∂Ω. In the last estimate, the space is enlarged to Vh, which requires that only
zh · n = 0 on ∂Ω.
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Next, choose τ ≃ H2 and fix s < 1, so that for h/H sufficiently small the term

C
H√
τ

(

h

H
+

(

h

H

)1−s
)

‖w‖1, H ,

can be absorbed by the similar term on the left-hand side of the inequality. This
completes the proof.
With these estimates, we now prove the main result.

Theorem 3.3. Under the assumption that the bilinear form a(., .) is H1-bounded
(as in (3.3)) and weakly coercive as in (3.4) (see also Remark 3.1), the following
optimal energy error estimate holds for h/H sufficiently small:

‖U−Uh‖a ≤ C

{

inf
v∈Vh

[

‖U − v‖a + H−1‖u − θ‖ + ‖∇(u − θ)‖
]

+ inf
w∈WH

‖λ − w‖
}

.

Above, U =

[

∗
u

]

is the exact solution and λ ∈ L2
0 is the exact Lagrange multiplier,

both of which are assumed to exist and to belong to the respective functional spaces.

Also, Uh is the finite-element solution, v =

[

∗
θ

]

∈ Vh, and w ∈ WH are any

finite-element functions.
Proof. For any v ∈ V and w ∈ W , the following identities hold:

a(E, E) = a(E, v) + a(E, E − v) + (δ, ∇ · θ) − (δ, ∇ · θ)
= a(E, E − v) − (δ, ∇ · θ)
= a(E, E − v) − (λ − w, ∇ · θ) + (λH − w, ∇ · θ)
= a(E, E − v) + (λ − w, ∇ · (e − θ)) − (λ − w, ∇ · e)

+(λH − w, ∇ · (θ − e)).

(3.13)

From the last inf–sup condition, Lemma 3.2, and the identity, (3.8), for the errors
δ = λ − λH and E = U − Uh,

(−δ, ∇ · θ) = a(E, v), for any v =

[

∗
θ

]

∈ Vh.

Thus, since λH = λ − δ, (λH − w, ∇ · θ) = (λ − w, ∇ · θ) + a(E, v),

C‖λH − w‖1,H ≤ sup
v=[0,θ]t∈Vh

(λH−w, ∇·θ)
‖θ‖+H‖∇θ‖ = sup

v=[0,θ]t∈Vh

a(E, v)+(λ−w, ∇·θ)
‖v‖+H‖∇v‖

≤ sup
v∈Vh

a(E,v)+(λ−w, ∇·θ)
‖v‖+H‖∇v‖ ≤ CH−1 (‖E‖a + ‖λ − w‖] .

As a result, from the representation, (3.13), and inequality, (3.9), used for w := λH−w,
ψ = θ − e, and s = 1,

‖E‖2
a ≤ ‖E‖a‖E − v‖a + ‖λ − w‖ (‖∇ · (e − θ)‖ + ‖∇ · e‖) + (λH − w, ∇ · (θ − e))

≤ ‖E‖a‖E − v‖a + ‖λ − w‖ (‖∇ · (e − θ)‖ + ‖∇ · e‖)
+ C‖λH − w‖1,H

(

‖e − θ‖2 + H2 ‖∇(e − θ)‖2
)

1
2

≤ ‖E‖a‖E − v‖a + ‖λ − w‖ (‖∇ · (e − θ)‖ + ‖∇ · e‖)
+ CH−1 (‖E‖a + ‖λ − w‖)

(

‖e − θ‖2 + H2 ‖∇(e − θ)‖2
)

1
2 .
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Letting v := v − Uh, hence θ := θ − uh, gives E − v := U − v and e − θ := u − θ.
Therefore,

‖E‖2
a ≤ ‖E‖a‖U − v‖a + ‖λ − w‖ (‖∇ · (u − θ)‖ + ‖∇ · e‖)

+ C (‖E‖a + ‖λ − w‖)
(

H−2‖u − θ‖2 + ‖∇(u − θ)‖2
)

1
2 .

Using a Cauchy-Schwarz inequality, for a small ǫ > 0, then,

‖E‖a‖U − v‖a ≤ 1

2
‖E‖2

a +
1

2
‖U − v‖2

a,

C‖E‖a

(

H−2‖u − θ‖2 + ‖∇(u − θ)‖2
)

1
2 ≤ ǫ‖E‖2

a +
C2

4ǫ

(

H−2‖u − θ‖2 + ‖∇(u − θ)‖2
)

,

‖λ − w‖‖∇ · e‖ ≤ ǫ‖∇ · e‖2 +
1

4ǫ
‖λ − w‖2.

Finally, the desired optimal energy error estimate for the vector unknown, U, is
straightforward by noticing that the terms (1

2 +ǫ) ‖E‖2
a and ǫ‖∇·e‖2 can be absorbed

into the term ‖E‖2
a = a(E, E) on the left-hand side, based on the weak-coercivity

assumption, (3.4).
Remark 3.2. In the above estimates, it is not assumed that the FOSLS bilinear

form, a(., .), is H1-coercive. If such stronger coercivity is assumed (which does hold
in certain cases), then the constraint problem is essentially like Stokes’, and any error
analysis available for discretized Stokes problems can be adopted.

Finally, note that an error estimate for the Lagrange multiplier λ is not given,
since it is not needed by the method. Next, we describe some numerical experiments
that are used to illustrate this result.

4. Numerical Results. In the following section, the mass conservation and er-
rors are measured for two types of problems. In both cases, the FOSLS formulation,
AU = b, is solved using the Preconditioned Conjugate Gradient (PCG) method with
a single V(1, 1) Algebraic Multigrid (AMG) cycle used as a preconditioner. Boomer-
AMG from the HYPRE package [28] developed by Lawrence Livermore National Lab-
oratory is used, with symmetric hybrid Gauss-Seidel (Gauss-Seidel on nodes within
the processor and block Jacobi across processors) as the smoother. The number of
PCG iterations, IT, is reported in the following tables in order to reduce the linear
residual to machine precision. To solve the constrained saddle-point problem, (2.14),
many techniques can be used, including the subdomain correction ideas presented in
[1]. However, as the main point of this paper is to show the error estimates, we use
a simple preconditioned MINRES algorithm [39] and solve the system to machine
precision. Such low tolerances, for both the constrained and pure FOSLS problem,
are used to ensure that the asymptotic regimes have been reached. In practice, many
less iterations would be needed for both systems. All matrices and vectors for the
tests were constructed using the modular finite-element library, MFEM [33].

Let A be the discretized FOSLS system and M be the mass matrix for P0 elements
on the constraint space. Since A is SPD, the following preconditioner

P =

(

A 0
0 M

)

,

is also SPD and, in the case of a(.., .) being H1-equivalent, P is known to be a uniform
preconditioner to system (2.14). It should be noted that the Lagrange multiplier
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space can also be constructed on a coarse mesh to ensure stability and satisfy the
conditions of the above theorems. Therefore, M will be the appropriate mass matrix
on this coarsened mesh. Since P0 elements are used, M is diagonal and is inverted
exactly. In contrast, A is not inverted exactly, rather it is replaced with an AMG
preconditioner, AAMG, namely one BoomerAMG V(1, 1) cycle is performed, which
defines A−1

AMG.
In the following tables, several quantities are reported. These include the local

mass conservation measured by mass loss, mlL = max
T

|
∫

T
(∇ · u − f) dT |, the global

mass loss, mlG = |
∫

Ω
(∇ · u − f) dΩ|, the FOSLS functional, F , which is equivalent

to the energy norm of the error in the solution, U, the L2 norm of the error in the
solution, Uerr, if possible, and the number of iterations needed to solve the system,
IT. Simulations are performed for the pure FOSLS discretization using both bilinear,
P1, and biquadratic, P2, elements on a uniform triangular mesh with spacing h.
The constrained FOSLS minimization is also computed using these spaces for the
unknowns plus a P0 space for the Lagrange multiplier, λ, on a mesh of size H. We
compare results for coarsening ratios of h/H = 1, 1/2, 1/4, and 1/8.

4.1. Diffusion Problem. Here, we solve a simple diffusion problem using the
FOSLS formulation, (2.6)-(2.8). The test problem is created by assuming the true
solution, p = sin(πx) sin(πy) on a the unit square, Ω = [0, 1] × [0, 1]. Then, ho-
mogeneous Dirichlet boundary conditions are used for p on the boundaries and the
tangential components of u = ∇p, are zero as well. The right-hand side becomes
f = 2π2 sin(πx) sin(πy).

The results in Table 4.1 show that FOSLS alone does not satisfy the divergence
constraint especially accurately. As the resolution is increased, either by h-refinement
or moving to biquadratics, the results do improve, but only because the overall accu-
racy is getting better. Adding the constraint to the system ensures that the divergence
constraint is satisfied and, as one can see in the table and in Figure 4.1, the FOSLS
functional (i.e., the energy norm of the error) is reduced at the appropriate rate. For
biquadratics, the inf-sup condition is always satisfied and we see a quadratic decay in
the energy norm error with mesh refinement as expected. For bilinears, the inf-sup
is only satisfied when the constraint space is coarser (at least h/H = 1/2) and, thus,
we see a linear decay in the energy norm error when this is satisfied.

4.2. Stokes’ Problem. Next we consider a steady state Stokes’ flow in a unit
cube, Ω = [0, 1] × [0, 1]. The velocity-vorticity-pressure formulation, (2.10)-(2.12)
is used. We assume that the normal components of the velocity are zero around the
boundary, n·u = 0 and the vorticity is zero everywhere except on the x = 1 boundary,
where we define p = 0 in order to nail down the constant in the pressure.

Similar to the results for the diffusion equations, Table 4.2 and Figure 4.2 shows
that mass conservation is regained for inf-sup stable finite-element pairs between the
FOSLS unknowns and the Lagrange multiplier, while the FOSLS functional still mea-
sures the energy norm of the error appropriately. Due to the boundary conditions,
n ·u = 0, global mass conservation is guaranteed in both the pure FOSLS case and the
constrained FOSLS case. However, only the constrained case gives local conservation
immediately even for low resolution results.
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P1 − P0 P2 − P0

h mlL mlG F Uerr IT mlL mlG F Uerr IT

FOSLS

1/4 8.0e-2 8.4e-1 3.8 3.7e-1 11 4.2e-3 1.5e-4 5.8e-1 1.7e-2 13
1/8 7.9e-3 2.2e-1 2.0 1.0e-1 14 2.7e-4 2.4e-5 1.5e-1 2.2e-3 15
1/16 8.2e-4 5.5e-2 9.9e-1 2.6e-2 16 1.7e-5 2.0e-6 3.8e-2 2.7e-4 16
1/32 9.1e-5 1.4e-2 5.0e-1 6.6e-3 17 1.1e-6 1.3e-7 9.6e-3 3.4e-5 18
1/64 1.1e-5 3.5e-3 2.5e-1 1.6e-3 17 6.6e-8 8.4e-9 2.4e-3 4.2e-6 20
1/128 1.3e-6 8.6e-4 1.2e-1 4.1e-4 18 4.1e-9 5.1e-10 6.0e-4 5.3e-7 22
1/256 1.6e-7 2.2e-4 6.2e-2 1.0e-4 19 2.6e-10 1.4e-12 1.5e-4 6.6e-8 28

Constrained FOSLS h/H = 1

1/4 - - - - - 4.4e-16 2.2e-16 5.9e-1 1.7e-2 30
1/8 - - - - - 2.2e-16 4.0e-16 1.5e-1 2.1e-3 34
1/16 - - - - - 1.4e-16 5.5e-16 3.8e-2 2.7e-4 35
1/32 - - - - - 8.7e-17 1.3e-15 9.6e-3 3.4e-5 36
1/64 - - - - - 5.2e-17 1.5e-16 2.4e-3 4.2e-6 37
1/128 - - - - - 2.5e-17 1.8e-15 6.0e-4 5.3e-7 38
1/256 - - - - - 1.5e-17 1.1e-16 1.5e-4 6.6e-8 45

Constrained FOSLS h/H = 1/2

1/4 4.4e-16 2.2e-16 3.9 2.8e-1 22 6.6e-16 6.6e-16 5.8e-1 1.7e-2 21
1/8 4.4e-16 3.6e-16 2.0 6.8e-2 36 3.3e-16 5.1e-16 1.5e-1 2.1e-3 25
1/16 2.2e-16 2.2e-16 1.0 1.7e-2 43 1.5e-16 8.0e-16 3.8e-2 2.7e-4 25
1/32 1.1e-16 1.5e-15 5.0e-1 4.2e-3 43 8.5e-17 7.9e-16 9.6e-3 3.4e-5 27
1/64 7.5e-17 7.5e-16 2.5e-1 1.0e-3 43 5.7e-17 1.2e-15 2.4e-3 4.2e-6 29
1/128 3.6e-17 1.1e-15 1.3e-1 2.6e-4 42 2.9e-17 9.0e-16 6.0e-4 5.3e-7 30
1/256 2.0e-17 5.9e-16 6.3e-2 6.5e-5 43 1.8e-17 1.0e-15 1.5e-4 6.6e-8 39

Constrained FOSLS h/H = 1/4

1/8 6.7e-16 7.2e-16 2.0 7.6e-2 23 5.6e-16 2.2e-16 1.5e-1 2.2e-3 20
1/16 3.9e-16 8.7e-16 9.9e-1 1.7e-2 29 3.3e-16 4.5e-17 3.8e-2 2.7e-4 22
1/32 1.9e-16 2.8e-16 5.0e-1 4.2e-3 31 1.5e-16 6.5e-16 9.6e-3 3.4e-5 24
1/64 1.0e-16 3.9e-16 2.5e-1 1.0e-3 31 8.8e-17 3.4e-17 2.4e-3 4.2e-6 29
1/128 5.4e-17 1.3e-15 1.2e-1 2.6e-4 32 4.8e-17 7.1e-16 6.0e-4 5.3e-7 30
1/256 2.8e-17 7.2e-16 6.2e-2 6.5e-5 33 2.6e-17 5.1e-16 1.5e-4 6.6e-8 39

Constrained FOSLS h/H = 1/8

1/16 6.7e-16 2.2e-16 1.0 2.0e-2 22 4.4e-16 1.6e-15 3.8e-2 2.7e-4 20
1/32 4.0e-16 1.1e-15 5.0e-1 4.4e-3 25 3.3e-16 2.4e-15 9.6e-3 3.4e-5 24
1/64 1.1e-16 5.6e-16 2.5e-1 1.1e-3 26 1.8e-16 3.1e-16 2.4e-3 4.2e-6 27
1/128 9.4e-17 2.9e-16 1.2e-1 2.6e-4 27 7.2e-17 3.2e-16 6.0e-4 5.3e-7 30
1/256 3.9e-17 1.7e-15 6.2e-2 6.5e-5 28 4.4e-17 8.3e-16 1.5e-4 6.6e-8 39

Table 4.1

Diffusion problem, (2.6)-(2.8), results using preconditioned MINRES on the saddle-point sys-
tem, (2.14), reducing the residual to machine precision and AMG preconditioned PCG on the FOSLS
system.

Finally, to test the method on a more interesting problem, we consider steady-
state Stokes’ flow down a long tube, Ω = [0, 8] × [0, 1]. In past work, [6, 26, 27], it
has been demonstrated that for problems where the inflow of the tube is prescribed,
u1 = sin(πx), along with zero-boundary conditions for u on the top and bottom,
and a zero pressure boundary condition on the outflow, basic FOSLS formulations
show a significant mass loss down the tube, see Figure 4.3. Applying the constrained
formulation to system (2.10)-(2.12), however, shows that the mass is regained down
the tube as shown in Figure 4.3.
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Fig. 4.1. Diffusion Problem, (2.6)-(2.8). Top: FOSLS functional (Energy norm of Error), F ,
versus grid size. Bottom: Local mass loss, mlL, versus grid size. Results for pure FOSLS solution
and constrained FOSLS solution with H = 2h.

5. Discussion. Along with [1], the above results show that conservation of a
divergence constraint is readily obtained by solving the constrained saddle–point
problem as described in (3.1) and (2.14). This paper expands upon the results by
confirming an error estimate of the solution in the energy norm. In the context of a
FOSLS finite-element formulation this guarantees that the FOSLS functional, F , still
maintains the property that it is an a posteriori error estimate in the energy norm
when the constrained problem is solved. This assumes that appropriate spaces are
chosen for the Lagrange multiplier space so that the inf-sup conditions are satisfied.
In addition, this results in the need for solving a saddle–point problem. However,
many advanced techniques have been developed to solve such problems and can be
used with relatively little extra computational cost (especially when the constraint
space is defined on a coarser mesh).

It should be noted that in all the test examples described above, a P0 space was
used for the constraint. Looking at the bound in Theorem 3.3, one notices that the
term, inf

w∈WH

‖λ − w‖ may imply a loss of order in convergence for the case of P2

elements for the FOSLS unknowns. However, this is only an upper bound and for the
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P1 − P0 P2 − P0

h mlL mlG F it mlL mlG F it

FOSLS

1/4 3.1e-2 0.0 5.3 15 5.5e-4 2.8e-17 8.2e-1 15
1/8 4.5e-3 1.7e-17 2.8 16 4.6e-5 2.2e-18 2.1e-1 16
1/16 5.9e-4 1.4e-18 1.4 17 3.0e-6 6.5e-17 5.4e-2 17
1/32 7.5e-5 1.2e-17 7.0e-1 18 1.9e-7 2.4e-17 1.4e-2 20
1/64 9.4e-6 1.8e-17 3.5e-1 18 1.2e-8 2.3e-17 3.4e-3 22
1/128 1.2e-6 1.2e-17 1.8e-1 19 7.5e-10 7.8e-18 8.5e-4 25

Constrained FOSLS h/H = 1

1/4 - - - - 2.6e-16 8.3e-17 8.2e-1 27
1/8 - - - - 1.0e-16 1.3e-17 2.1e-1 31
1/16 - - - - 4.5e-17 6.8e-17 5.4e-2 32
1/32 - - - - 2.3e-17 2.3e-17 1.4e-2 35
1/64 - - - - 1.3e-17 1.9e-17 3.4e-3 37
1/128 - - - - 7.7e-18 7.4e-18 8.5e-4 41

Constrained FOSLS h/H = 1/2

1/4 1.2e-16 1.4e-17 5.4 22 2.1e-15 1.4e-17 8.2e-1 18
1/8 1.3e-16 9.1e-18 2.8 37 3.9e-16 1.3e-17 2.1e-1 22
1/16 9.1e-17 1.0e-19 1.4 40 6.9e-17 4.0e-17 5.4e-2 25
1/32 4.0e-17 3.8e-17 7.0e-1 40 2.7e-17 6.3e-17 1.4e-2 27
1/64 1.9e-17 7.9e-18 3.5e-1 40 1.9e-17 8.1e-18 3.4e-3 30
1/128 1.1e-17 2.1e-17 1.8e-1 41 9.3e-18 5.0e-17 8.5e-4 34

Constrained FOSLS h/H = 1/4

1/8 5.9e-16 2.8e-17 2.8 22 2.3e-15 1.3e-17 2.1e-1 19
1/16 5.8e-16 1.5e-17 1.4 26 6.1e-16 1.1e-17 5.4e-2 22
1/32 5.8e-17 5.9e-18 7.0e-1 28 1.1e-16 5.6e-17 1.4e-2 25
1/64 2.9e-17 4.5e-17 3.5e-1 29 4.9e-17 2.8e-18 3.4e-3 29
1/128 1.3e-17 2.2e-17 1.8e-1 30 1.5e-17 1.1e-16 8.5e-4 34

Constrained FOSLS h/H = 1/8

1/16 2.5e-16 2.8e-17 1.4 21 3.9e-16 3.9e-17 5.4e-2 21
1/32 4.3e-16 2.3e-17 7.0e-1 24 7.8e-17 8.7e-17 1.4e-2 25
1/64 1.7e-16 4.9e-18 3.5e-1 25 4.7e-17 1.1e-16 3.4e-3 29
1/128 1.9e-17 1.1e-17 1.8e-1 27 4.5e-17 1.5e-17 8.5e-4 32

Table 4.2

Stokes’ problem, (2.10)-(2.12), results using preconditioned MINRES on the saddle-point sys-
tem, (2.14), reducing the residual to machine precision and AMG preconditioned PCG on the FOSLS
system.

simple domains used (hence H1-coercivity does hold, see Remark 3.2), the standard
quadratic convergence of the functional is maintained. In general, using discontinuous
P1 (or higher order) elements for the constraint should bring the order of convergence
back up.

Future work involves testing with higher-order spaces, as well as implementa-
tions for other test problems in which satisfying a divergence constraint is important.
This includes applications such as incompressible magnetohydrodynamics, where a
solenoidal constraint on the magnetic field, ∇ · B = 0, must be satisfied in addi-
tion to the fluid incompressibility [3, 11]. Also, this work can be extended to other
formulations and other types of constraints. This includes considering more general
Petrov-Galerkin type problems, where many constraints can be added to the system
to ensure some kind of conservation properties that are of interest.

Acknowledgment. The author thanks Dr. Junping Wang for useful comments
and suggestions.
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Fig. 4.2. Stokes’ problem, (2.10)-(2.12). Top: FOSLS functional (Energy norm of Error), F ,
versus grid size. Bottom: Local mass loss, mlL, versus grid size. Results for pure FOSLS solution
and constrained FOSLS solution with H = 2h.
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